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Pokrovskii [1] has given a description of the behavior of metals  
under the high dynamic loads arising in the collision of solids. Theoret- 
ical studies have been made  [2, 3] on this, the interaction being con- 
sidered on the basis of a model  of ideal incompressible jets. Baum et 
al. [4] have examined collisions in which the compressibility and 
strength of the metals  are taken into account. 

Zlattn [5] has examined the effects of compressibility in the 
compression of meta l l ic  bodies. Sagomonyan [6] has proposed applying 
the methods of hypersonic gasdynamics to describe steady-state colli- 
sion of solids. Here I consider steady-state collision of solids on the 
basis of two-dimensional  flow with allowance for compressibility. 
Similar results have been obtained for one-dimensional  flow [4, 5]. 

A metal  rod (figure) of density p 0, whose length greatly exceeds 
its transverse dimensions, strikes a semi-infini te  obstacle at right an- 
gles with a velocity V0. Shock waves are produced in the rod and ob- 
stacle, and the material  behind them is in a nearly liquid state. The 
liquid jet  formed from the rod is turned through 180" by the high op- 
posing pressure and acquires an axially symmetric mushroom form. The 
bounding surface AOA' between the rod and the  obstacle is a contact 
surface, at which the pressure and the normal component  of the velocity 
are continuous. Assuming that this surface can be approximated by a 
one-parameter  surface (e. g . ,  a sphere), we consider the case in which 
the speed U of that surface exceeds the speed of sound in the obstacle, 

while V0 - U is greater than the speed of sound in the rod. Then the 
shock waves in the rod and the obstacle are at rest relative to the con- 
tact surface. The main  factor governing the entry of the rod into the 
obstacle is the pressure distribution over the contact surface, which will 
probably be similar to the pressure distribution for a body moving in an 
unbounded compressible liquid. This approach to the problem allows 
one to use  the equations for flow of a compressible ideal liquid to de- 
scribe the motion. 

The following equations define the normal component  u and tan- 
gential component  v of the velocity vector W as well as the pressure 13, 
density p, and entropy S in the variables r and 0 (case of axiaI sym- 
metry): 
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The boundary conditions for system (i) are the conditions at the 
shock waves NN and nn'  (figure), whose meridional sections are given 
by rw(0hand rw(0)2, together with the conditions at the contact surface 
AOA', whose section is given by rk(O). The usual relations apply for 
the fluxes of mass, momentum,  and energy at the shock waves: 

poVon = pVn, ~'ot ~ vt,  Po As poVo'n 2 = P As PVn ~, 

ho As I/~VOn~ = h -~l/evn ~- . (2) 

Here the subscript 0 denotes parameters of the unperturbed flow, 
while the subscripts n and t correspond to velocity components normal 
and tangential  to the shock-wave front. 

The pressure and the normal components of the velocity are con- 

tinuous on AOA': 

r k' (0) 
pl = pc,  U I -- ~21 - -  = O, 
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where the subscript 1 refers to the obstacle and the subscript 9. to the 
rod. 

The equation of state is taken in the following form [7]: 

3RTTp (p)p ( ~ _ )  70 
P = P x ( P )  AS A D + ~  p~3(p) T ~, 
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t dE x (p) 
Px ~" p~ dp ' (4) 

in which T is absolute temperature,  E is specific internal energy, E x 
is the energy of the metal  at 0 ~ K (cold component  of the energy), 
A is the atomic weight, R is the gas constant, 7p(P) is the Gruneisen 
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coefficient for the lattice, 70 is the Grtineisen coefficient for the 
electrons, 1~ is the coefficient for the electron specific heat,  0 is the 
Debye temperature, and D(0/T) is the Debye function. Solid-state 
theory gives the following relation between yp(p) and the eotd com-  

ponent Px(P) of the pressure: 

2 dv~ (PxV~/'t) (PxV":~r 

in which v = l i p  is the specific volume. 
The value t = 0 corresponds to the Landau-Stanyukovich-Slater 

theory [8, 9], while t = 1 corresponds to the Dugdale-MaeDonald 
theory [10]. The p-dependence of Px, Ex, 7tKp), and t3 is as follows: 

Px = Q [6% exp {q (I -- 6-'I')} -- 6 %] , 

Ex = 3po~Q [q-] exp {q (I -- 6-'A)} -- 6 %] , 

i q 6  ' e x p { q ( l - - 6  )} - -6  
_x/ , 

Tp 6 6 - t q e x p { q ( t - - 6  ' ) } - - 2  

[3~o6 'r~, 6=plpo ~ , (5) 

in which PQk is the density of the meta l  at 0 ~ K, 
We use (4) to solve system (1) for region 1 (figure) subject to the 

boundary conditions of (2) by Telenin 's  method [11] for supersonic 
flow of a compressible fluid around a blunt body. The calculations 

were made for a copper rod meet ing a copper half- space at speeds of 
28.2, 22.6, 16.4, and 13.2 kin/see,  which correspond, respectively, 

�9 ~ i 6 topressures behind the shock wave in the obstacle of 9 .10  , 5- 0 , 
2"10 s, and 106 arm, Other calculations were made  for a lead rod and 
half-space meeting at speeds of 22.2, 15.8, and 9.2 kin/see,  which 
correspond similarly to pressures of 9.106, 5" 106, and i06 atm. All of 
the above parameters were derived for region 1. 
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The following is the dimensionless pressure along the zero ray from 
the contact  surface (g = O) to the shock wave (g = 1) for Cu and Pb at 
various VQ: 

w A -- w B 
w = r A - -  r'~-~B- ( r  - -  r B )  @ w B . (7) 

~ = 0 . 0  0.2 O.& 0.6 0:8 t . 0  CU 
p = 0 . 7 6 5 7  0.7233 0.6597 0.5998 0.5321 0.4905 (V0=28.2) 
p = 0 . 7 3 6 4  0.6712 0.5997 0.5379 0.4836 0.4326 (Vo=22.6) 
p = 0.6746 0.5785 0.~973 0"4346 0.3832 0.3375 (Vo=t6.4) 
p = 0 . 6 2 4 5  0.5072 0.4193 0.3563 0.3076 0.2659 (Vo=t3.2) 

5 = 0 . 0  0.2 0.4 0.6 0.8 t . 0  Pb 
p = 0 . 8 1 0 1  0.7936 0.7700 0.7192 0.6652 0.6076 (V0=22.2) 
p = 0 . 7 8 7 2  0.7743 0.7228 0.6675 0.6t30 0.5577 (Vo=t5.8) 
p = 0 . 7 0 4 9  0.6t54 0.5324 0.4662 0.4t09 0.36t7 (Vo=9,2) 

The distances of the shock wave in region 1 from the contact  sur- 
face are much greater for the metals  than for a real gas at the same 
Mach number, which may be due to the much smaller density change 
at the shock-wave front in a metal .  

Calculations for region 2 were performed on the basis of the con- 
servation of mass and momentum.  The jet  from the rod flows away 
along AOA', on which surface we know the distributions of the velocity 
pressure, and density from the solution for region l .  The following are 
the conservation equations for the volume ABCC'B'A'O, which is in- 
dicated by the dashed line in the figure: 

1] ~n 

= I (p - -N)  r~d,, (Y." = Z + ZXOA, ). (6) 
5q, 

3 

We can solve (6) if we know the pressure distribution along AOA' 
and the exact  values for the pressure, density, and velocity at A and 
A',  provided some assumption is made about the distribution of the 
flow parameters in section Z (figure). We assume that the local ve- 
locity of sound is reached at n and n '  (where the shock waves reaches 
the free surface). Then the relationships at the shock-wave front allow 
us to determine the angle of inclination ~o of the shock wave at n and 
n '  to the positive direction of the axis 00'. From the known angle of 
the step at n and n'  we deduce the pressure at these points. Bernoulli's 
integral applies along the free surface nB and n'B', while the pressure 
at B and B' is known, being simply N; hence,  the velocity and density 
at B and B' maybede te rmined .  Let PA, OA, WA and PB, PB, WB be 
the pressure, density, and velocity, respectively, at A and B. If we 
approximate the parameters in section Z by linear functions of the 
distance from the contact surface, we have 

PA - -  P;s 
p - -  r A  _ _  r B  (r  - -  r B )  - -  P B ,  

P A  -- PB 

p -  rA--rB ( r - - r B ) + p B ,  

Substitution of (7) into (6) gives two algebraic equations for r A and 
rB as functions of the radius r0 of the rod before collision. When a 
copper rod meets a copper half-space at 28.2 km/sec,  r A is 2.52r0, 
while the diameter  of the jet in the section r is r A - r B = 0.66r0. 

Analogous calculations have been performed for all the cases 

of collision. 
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